

SPICy (2015-2017)

Toward the implementation of a cycloneinduced coastal hydrodynamics and flooding forecasting system for Reunion Island

Lecacheux S.¹, Pedreros R.¹, Paris F.¹, Chateauminois E.¹, Nicolae-Lerma A.¹, Barbary D.², Bielli S.², Bousquet O.², Bonnardot F.³, Quetelard H.³, Dupont T.³

¹BRGM, 3 avenue Claude Guillemin 45060 Orléans, France.

³Direction Régionale de Météo-France pour l'Océan Indien, 50 boulevard du Chaudron, BP 4, 97491 Sainte-Clotilde, Réunion.

²Laboratoire de l'Atmosphère et des Cyclones, Unité Mixte 8105 CNRS/Météo-France/Université de La Réunion, Sainte-Clotilde, Réunion.

A high exposure to cyclonic events ...

- The most exposed among the French Overseas Territories
- > 23 cyclones passed within 200km of the island over the last 30 years

.. but no coastal surge and wave forecast so far

Main objectives of the Project

- Develop the next generation of cyclone-induced wave, surge (regional scale) and flood (local scale) forecasting system for the Reunion Island
- Investigate ways for better integration with emergency services to keep in mind the possible operational applications beyond the project
- > Produce a demonstrator and inovative products that will be tested within two crisis exercices in 2016 (simulator) and 2017 (on site)

Reunion island presents specific issues

> A small island (Ø ~ 50km)

 High uncertainties related to the track

Peeble beaches

- No continental shelf associated to a microtidal regime (~0.5m)
 - Storm surge is not the point
 - but waves are

Fragmented fringing reefs

Volcanic beaches

Cliffs

- Various coastlines types
 - And as many different behaviours to account for

- Coastal flooding due to wave overtopping only
 - Local scale processes are essential

exposed at extreme wave regimes

> Cyclonic waves: all around the island, up to H_{s0} ~18m and Tp ~ 16s in N

- ➤ Southern waves: S (SW to SE), H_{s0} ~6m and Tp ~ 16s (RP 50 years)
- > Trade-wind wave: E (NE to S), up to H_{s0} ~4m and Tp ~10s (RP 50 years)

Pointe des

Pointe Champ Borne

> 5 ICS 2016 - Sydney

... that require suitable solutions

> A probabilistic approach through ensemble simulations is required to account for the high uncertainties

.... but at the same time:

> Issue 1 :

Classical parametric wind and pressure fields (Holland, 1980) are not adapted to simulate waves because of large-scale environment influence

> Issue 2 :

Classical approaches with overflowing models used in forecast systems (like in the US) can't be applied here

A problem of scale (processes) and computing times!

Our strategy for the meteorological data (1)

- Develop 2 methods to generate ensembles of scenarios accounting for both track and intensity uncertainty
 - Option 1: Based on historical forecast errors statistics (DeMaria et al. 2009)
 - Option 2: Based on the ECMWF ensemble forecasts

Apply a clustering to the members to optimize the number of simulation and gain in computing times

Our strategy for the meteorological modelling (2)

- SPICy
- Create corresponding 2D wind and pressure fields by introducing the scenarios into the model Meso-NH (Global model coupling) through a bogusing scheme to:
 - take into account the large-scale circulation in wave modelling applications
 - reconstruct a wind circulation consistent with the local orography when the cyclone is in the vicinity of the Island

Our strategy for the hydrodynamic modelling (1)

Implement an optimized modelling platform comprising:

- ✓ 2D spectral wave model (WW3) and NLSW model (MARS-2D: tide, storm surge, currents) until a resolution of 100-300m
- ✓ 1D spectral wave model profiles (SWAN) on homogeneous coastal segments
 to compute the wave-induced setup at 10m resolution all around the island
- ✓ 2DV non-hydrostatic free surface model profiles (SWASH) to fully simulate wave overtopping with at 1m resolution (topo-bathymetry lidar data)
- ✓ 2D NLSW model (MARS-Flood) to propagate the water flow with a resolution of 4m enabling a realistic representation of urban areas (wet-dry interface, spatial distribution of friction, river discharge, runoff, culvert and urban drainage)

ICS 2016 - Sydney Regional scale Local scale >

Our strategy for the hydrodynamic modelling (2) Regional scale

> 10 ICS 2016 - Sydney

Computing time ~ 25min on 24 CPU for 24h simulated : OK!

Our strategy for the hydrodynamic modelling (3)

Local scale

Inputs from regional models (waves and waterlevels time series)

10m resolution MARS-FLOOD model

Sainte-Suzanne city

1m resolution SWASH profiles

 \triangle

Computing time ~ 20 min on 24 CPU for 24h simulated : OK!

Computing time ~ 2h30 on 24 CPU for 24h simulated : Too long!

Our strategy for the hydrodynamic modelling (4) Using meta-models for wave overtopping

Siven a database of 100 scenarios computed with full 2DV process model:

Develop meta-models (approximations) that compute in a few seconds:

Option 1: Approximate characteristics of the time series (start/end of overtopping and max. discharge) with regression methods

Option 2: Approximate the full time series with advanced mathematical methods like Generalized Boosted Regression Models

Work still in progress but first results are promising!

Application with Dina (2002)

Discharge_max (SWASH): 8625 m³
Discharge_max (approximated): 7626 m³

Example of reconstitution of historical events (2) The case of Dumile (Jan. 2013) at regional scale

Input Data: Best-track Dumile+ bogusing in Meso-NH (8km-2Km)

Comparison with satellite altimetry observations

Comparison with buoy measurements (AWAC)

Storm surge (including wave setup)

Example of reconstitution of historical events (3) The case of Dina (Jan. 2002) on Sainte-Suzanne

Input Data : Best-track Dina + bogusing in Meso-NH (8km-2km)

SPICy « simplified » strategy (Zoom)

- (1) « Building destroyed by waves »
- (2) « Six flats inundated at street level »
- (3) « Firestation inundated »
- (4) « Street Desprez and post station is inundated »

Comparison with a « full processing modelling » (SWASH 3D, 2m resolution)

Next steps, next questions

> Test the tools with ensemble forecasts

Qualification of the forecast : Scoring? Reliability diagrams.
 Talagrand diagrams?

Optimization of the number of tracks to simulate

How to represent results in an intelligible and useful manner for

emergency managers?

•

> First crisis exercise in June 2016

To follow the project ...

THANKS!

http://spicy.brgm.fr : in english very soon, with (un)like buttons!

